
Composability in HPC

Paul Carpenter
Senior Researcher

3/6/2022 COMPSYS Workshop, IPDPS 2022

This work is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 754337 (EuroEXA); it has been supported by the Spanish Ministry of Science and
Technology (project TIN2015-65316-P), Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272) and the
Severo Ochoa Programme (SEV-2015-0493).

HPC application memory capacity requirements
vary dramatically (apps)

• PRACE UEABS: Benchmark suite
of applications for procurement
of largest HPC systems in Europe

• Strong scalability (same problem
size on varying #nodes)
• Problem size per node varies

dramatically

* Zivanovic et al, Main Memory in HPC: Do We Need More, or Could We Live with
Less? ACM Transactions on Architecture and Code Optimization, March 2017

NAMD

COMPSYS Workshop, 3 /6/2022 2

HPC application memory capacity requirements
vary dramatically (benchmarks)

• Benchmarking runs need large problem sizes to stress the machine

HPL scaling (model) HPCG scaling (model)

* Zivanovic et al, Main Memory in HPC: Do We Need More, or Could We Live with Less?
ACM Transactions on Architecture and Code Optimization, March 2017 Article No. 3

COMPSYS Workshop, 3 /6/2022 3

General Purpose Cluster: 11.15 Pflops
MN4 CTE-Power: 1.57 Pflops
MN4 CTE-ARM: 0.65 Pflops
MN4 CTE-AMD: 0.52 Pflops

MareNostrum 1
2004 – 42,3 Tflops

1st Europe / 4th World
New technologies

MareNostrum 2
2006 – 94,2 Tflops

1st Europe / 5th World
New technologies

MareNostrum 3
2012 – 1,1 Pflops

12th Europe / 36th World

MareNostrum 4
2017 – 11,1 Pflops

2nd Europe / 13th World
New technologies

MareNostrum 4
Total peak performance: 13,9 Pflops

COMPSYS Workshop, 3 /6/2022 4

Handling varying memory demands: state of the art:
Large and small memory nodes in MareNostrum 4

https://www.bsc.es/user-support/mn4.php

COMPSYS Workshop, 3 /6/2022 5

Stranded resources in cluster architecture
• >90% of TOP500 HPC systems are clusters

• Cluster is large number of servers interconnected by network
• Each server has separate memory hierarchy

• Memory capacity unused by the CPUs on a node cannot be used by CPUs on another node

COMPSYS Workshop, 3 /6/2022 6

Stranded resources (simulation)
• Large and small memory nodes work well when system matches jobs

• Left-hand plot: in this example bottlenecked by CPU availability
• But not so well when system does not match job mix

• Right–hand plot: system memory and CPU utilization both low
• => Resources exist in system but are “stranded”

• Methodology later in presentation

System matches job mix
(25% large nodes, 25% large jobs)

System mismatches job mix
(25% large nodes, 50% large jobs)

COMPSYS Workshop, 3 /6/2022 7

Disaggregated architecture

• Share memory capacity, storage, accelerators among nodes

• Under investigation in academia and industry
• (1) Addresses stranded resources problem

• (2) Addresses coarse granularity of DIMM provisioning
• Power of two sizing, balanced over memory controller channels

COMPSYS Workshop, 3 /6/2022 8

Approach 1: Disaggregated memory (aka centralized)
• Compute and memory completely separate

• Independent scaling of compute and far memory
• Independent upgrading (different rates of technology improvement)
• More “far” memory than single machine
• Separate failure domains for compute nodes and disaggregated memory
• Better shareability among processors (equidistant)

• Examples
• Memory API: The Machine (HPE), OpenFAM [LNCS2019], RAM Area Network (ANL)
• Paging device: [ISCA2009] [HPCA 2012]
• Persistent key–value store: FlatStore [ASPLOS 2020], Clover [ATC2020]
• Persistent memory file system: Octopus [ATC2017], Orion [FAST 2019]
• Database storage engine: NAM [VLDB 2016]
• Recoverable persistent data structures: AsymNVM [ASPLOS 2020]
• OS: LegoOS [OSDI 2018]
• Full stack prototype: dRedBox [DATE 2018]

Node
0

Node
1

Node
2

Mem
1

Mem
0

Mem
2

…

COMPSYS Workshop, 3 /6/2022 9

Approach 2: “Remote memory” (aka distributed)
• Nodes can “borrow” unused memory from other machines

• Main advantage: tight coupling between CPU and its memory
• No cost/small cost if not using memory disaggregation

• Examples
• Paging and prefetching: Infiniswap [NSDI 2017],

Fastswap [EuroSys 2020], Leap [ATC 2020]
• Coherence-based memory: Kona [ASPLOS 2021]
• PGAS: OpenSHMEM
• Distributed shared memory: FaRM [NSDI 2014],

Grappa [ATC 2015], HotPot [SOCC 2017], GAM
[VLDB 2018], Concordia [FAST 2021]

• Memory mapped files: Remote Regions [ATC 2018]
• Offloaded kernels: StRom [EuroSys 2020]
• Full stack prototype: ExaNoDe/EuroEXA, ThymesisFlow [MICRO

2020]

• Distinction between local and remote memory
• We use this approach

Node
0

Node
1

Node
2

Mem
1

Mem
0

Mem
2…

COMPSYS Workshop, 3 /6/2022 10

Model disaggregated memory hierarchy
• Inspired by UNIMEM* from Euroserver, ExaNoDe and EuroEXA projects
• Remote memory access performed through a common Address Space
• We consider capacity sharing among pairs, quads, up to whole system

H2020 grant
number 671578

FP7 grant
number 610456

H2020 grant
number 754337

• Yves Durand et al. “Euroserver: Energy efficient node for european micro-servers”. In: 2014
17th Euromicro Conference on Digital System Design. IEEE. 2014, pp. 206–213 COMPSYS Workshop, 3 /6/2022 11

Software is the issue!
• System software

• OS support, MPI and PGAS communication, filesystems
• Dynamic changes and migration to avoid memory fragmentation (topic of ”malleability” still research)

• Resource management
• Batch scheduler: combinations of resources: memory types, memory capacities, accelerators, etc.

• Hardware abstraction layer
• Isolation among applications

• HPC used to exclusive access and non-blocking networks
• Memory bandwidth interference on one node may affect whole job, possibly with hundreds or thousands of

waiting nodes
• Programming models

• Must be open and vendor independent
• Does application distinguish near and far memory? (when allocating, when using)

• Applications
• How to tolerate increase in memory latency (base and due to contention): Little’s law
• Applications have lifetimes of decades, domain knowledge embedded in source code
• Major effort to adopt new technologies

COMPSYS Workshop, 3 /6/2022 12

Other aspects of disaggregated memory

• User practices
• Characterization of jobs: knowing what requirements are (how much memory)
• Possible change to peer review process to allocate memory–hours, as well as CPU–hours (and energy?)

• Resilience
• MareNostrum 4 had 67 UEs in two years of operation
• Estimated loss of 40k node–hours due to aborted jobs (<0.1% of operation) [*]
• Disaggregated memory may make it worse though.

• Security
• How strong are the security guarantees?

[*] Isaac Boixaderas, Javier Bartolome, Paul M. Carpenter, Darko Zivanovic, David Vicente, Petar Radojkovic,
Sergi More, Marc Casas, and Eduard Ayguade. Cost-Aware Prediction of Uncorrected DRAM Errors in the Field.
International Conference for High Performance Computing, Networking, Storage, and Analysis, SC'20

COMPSYS Workshop, 3 /6/2022 13

Scheduling and allocation problem

• Develop disaggregated memory aware Slurm job scheduler
• Only new information is job memory demands at submission time

• Evaluate policy and architectural tradeoffs using simulation

1. Disaggregated memory systems are immature
• Not yet available (e.g. IBM POWER10)
• System software immature (e.g. ExaNoDe and EuroEXA)
• Typically high latencies due to FPGA emulation (e.g. ExaNoDe and EuroEXA, IBM

ThymesisFlow)

2. At-scale research in job scheduling cannot use a production machine
• Would negatively impact service delivered to users

• All results in this presentation were obtained using BSC Slurm simulator

COMPSYS Workshop, 3 /6/2022 14

BSC Slurm simulator

• Uses real Slurm daemons to capture influence of
all Slurm parameters

• Allows fast exploration and evaluation of batch
scheduler algorithms

• Input is Standard Workload Format trace (SWF)

• Open-source: https://github.com/BSC-
RM/slurm_simulator

• Developed by Marco D'Amico, Ana Jokanovic,
Julita Corbalan at BSC

COMPSYS Workshop, 3 /6/2022 15

https://github.com/BSC-RM/slurm_simulator

Performance impact of disaggregated memory
• Slurm simulator needs to estimate cost of disaggregated memory: network and memory contention

• For evaluation, not scheduling policy

• Curve of performance depending on memory interface contention
• x-axis is maximum interference across all processes
• Curve depends on number of processes with interference close to maximum

Slowdown curve: quantifies performance impact of interfering memory bandwidth

COMPSYS Workshop, 3 /6/2022 16

Model inputs and outputs

COMPSYS Workshop, 3 /6/2022 17

Multi-node (MPI program) slowdown methodology

COMPSYS Workshop, 3 /6/2022 18

Extending Slurm simulator for disaggregated memory

• We extended Slurm’s allocation policy to exploit disaggregation

• Remote memory accesses are model/ed after prior slowdown-based method
• Disaggregation-aware policy: Allocates nodes with enough local memory to satisfy the job's request,

otherwise favours node with higher free memory available

Felippe Vieira Zacarias, Rajiv Nishtala, and Paul Carpenter. “Contention-aware application performance
prediction for disaggregated memory systems”. In: Proceedings of the 17th CF. 2020, pp. 49–59

COMPSYS Workshop, 3 /6/2022 19

Extending Slurm simulator for disaggregated memory II

$YDLODEOH
QRGHV

6FKHGXOH

6HOHFW
QRGHV

9HULI\�QRGH
VWDWH

6HOHFW�PHPRU\�
QRGHV

6ORZGRZQ
PRGHO

6HQG�MRE
GXUDWLRQ

/DXQFK
MRE

$OORFDWH
QRGHV

$OORFDWLQJ�GLVDJJUHJDWHG�UHVRXUFHV

5HPRWH�PHPRU\�DFFHVV�PRGHO

6LPXODWH
MRE

6OXUPFWOG 6OXUPG

8SGDWH�MRE
GXUDWLRQ

8SGDWH
VLPXODWHG
TXHXH

7UDFH

VLPBPJU

VOXUPFWOG VOXUPG

6/850�
ORJV�RXWV

6KDUHG
0HPRU\

,QGLYLGXDO�
MRE
V�	�V\VWHP
V

PHWULFV�

6\QF6/850�$3,
�VEDWFK�

6/850�VLPXODWRU

VOXUP�FRQI

COMPSYS Workshop, 3 /6/2022 20

Experimental methodology

• We generated synthetic workloads using
CIRNE Model

• And augmented it with real application
data

• We set up different configurations to
explore heterogeneity in job requirements
and node capacities

COMPSYS Workshop, 3 /6/2022 21

Large and small memory job characteristics

• Normal jobs fit in 32 GB standard node
• Large jobs do not fit
• Composite traces, e.g. 25% large have jobs taken from large and small

with appropriate probabilities

COMPSYS Workshop, 3 /6/2022 22

Effect of disaggregated memory group size on
throughput

System 0% Large System 15% Large System 25% Large

Jobs Large 50%
Jobs Large 75%

Jobs Large 100%

2 4 8 16 32 64 128 256 512 1024 0 2 4 8 16 32 64 128 256 512 1024 0 2 4 8 16 32 64 128 256 512 1024

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

. t
hr

ou
gh

pu
t (

jo
bs

/s
ec

)

Baseline (not disaggregated) Disaggregated

15% large nodes

2

25% large nodes 50%
 large jobs

75%
 large jobs

100%
 large jobs

N
or

m
al

ize
d

th
ro

ug
hp

ut
 (j

ob
s/

se
c)

DisaggregatedBaseline
10244 8 16 32 64 128256 512 2 10244 8 16 32 64 128256512 2 10244 8 16 32 64 128256512

COMPSYS Workshop, 3 /6/2022 23

Effect of disaggregated memory group size on
throughput

System 0% Large System 15% Large System 25% Large

Jobs Large 50%
Jobs Large 75%

Jobs Large 100%

2 4 8 16 32 64 128 256 512 1024 0 2 4 8 16 32 64 128 256 512 1024 0 2 4 8 16 32 64 128 256 512 1024

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

. t
hr

ou
gh

pu
t (

jo
bs

/s
ec

)

Baseline (not disaggregated) Disaggregated

15% large nodes0% large nodes 25% large nodes 50%
 large jobs

75%
 large jobs

100%
 large jobs

N
or

m
al

ize
d

th
ro

ug
hp

ut
 (j

ob
s/

se
c)

Sharing across
pairs of nodes

Sharing across whole system
at same latency: not feasible

DisaggregatedBaseline
2 10244 8 16 32 64 128256 512 2 10244 8 16 32 64 128256512 2 10244 8 16 32 64 128256512

No disaggregated memory:
not possible or low efficiency

COMPSYS Workshop, 3 /6/2022 24

Effect of disaggregated memory group size on
throughput

System 0% Large System 15% Large System 25% Large

Jobs Large 50%
Jobs Large 75%

Jobs Large 100%

2 4 8 16 32 64 128 256 512 1024 0 2 4 8 16 32 64 128 256 512 1024 0 2 4 8 16 32 64 128 256 512 1024

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
rm

. t
hr

ou
gh

pu
t (

jo
bs

/s
ec

)

Baseline (not disaggregated) Disaggregated

Quantifies impact of
scope of disaggregated

memory

15% large nodes0% large nodes 25% large nodes 50%
 large jobs

75%
 large jobs

100%
 large jobs

N
or

m
al

ize
d

th
ro

ug
hp

ut
 (j

ob
s/

se
c)

DisaggregatedBaseline
2 10244 8 16 32 64 128256 512 2 10244 8 16 32 64 128256512 2 10244 8 16 32 64 128256512

COMPSYS Workshop, 3 /6/2022 25

Normalized throughput for
simulated systems running various job mixes

COMPSYS Workshop, 3 /6/2022 26

Normalized throughput for
simulated systems running various job mixes
• Baseline cannot run large jobs on 0% large system

XX

X X X

COMPSYS Workshop, 3 /6/2022 27

Normalized throughput for
simulated systems running various job mixes
• Disaggregated approach matches baseline when sufficient memory

COMPSYS Workshop, 3 /6/2022 28

Normalized throughput for
simulated systems running various job mixes
• Disaggregated approach has benefit when memory constrained

COMPSYS Workshop, 3 /6/2022 29

Normalized throughput for
simulated systems running various job mixes

• Disaggregated approach gets similar performance with less memory

13% saving (0%
large not 15%)

20% saving (0%
large not 25%)

33% saving (0% large
not 50%, for 5%

throughput drop)

16% saving (50%
large not 75%)

COMPSYS Workshop, 3 /6/2022 30

Response time* distribution
for large and normal jobs

* Response time is queuing time plus runtime

• Large and normal jobs benefit roughly equally

COMPSYS Workshop, 3 /6/2022 31

Scatter graph of average
memory and CPU utilization

COMPSYS Workshop, 3 /6/2022 32

Scatter graph of average
memory and CPU utilization

Underprovisioned: Baseline
not fully using CPUs or memory

Underprovisioned: Disaggregrated fully
using CPUs and/or memory

Match or overprovisioned: Baseline and
disaggregated both bottlenecked by CPUs

COMPSYS Workshop, 3 /6/2022 33

Scheduling time per job
• Approx. 2x slower per job when no benefit (right-hand side)
• Approx. 2x faster per job when there is a benefit (left-hand side)

• Due to fewer attempts to backfill each job

COMPSYS Workshop, 3 /6/2022 34

Problem: User must specify max memory demands

• HPC schedulers typically assign resources to jobs statically

• Users are required to estimate job memory requirements at submission time
• Too low: jobs may be cancelled/killed
• Too high: may waste HPC resources

• Key point #1: How important is accuracy in memory demands to system throughput and response
time?

• Key point #2: What is user's incentive to be accurate, in terms of individual job response time?

COMPSYS Workshop, 3 /6/2022 35

System throughput effect of overestimation

• Degradation in system throughput increases
with system and job mix mismatch

• Up to 25% reduction in throughput at 60%
increase in demands

• Conclusion: System throughput is sensitive
to memory estimates

System 0% Large System 15% Large System 25% Large

Jobs Large 50%
Jobs Large 75%

Jobs Large 100%

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60

0.000

0.002

0.004

0.006

0.000

0.002

0.004

0.006

0.008

0.000

0.002

0.004

0.006

Memory overestimation (%)

Th
ro

ug
hp

ut
 (j

ob
s/

se
c)

COMPSYS Workshop, 3 /6/2022 36

Implications of memory demands - Individual Job
• User’s experience: how will memory demands affect my job response time?
• Plot single job response time as a function of memory overestimation, everything else constant

• Not practical
• We apply a Correlation analysis

• Running the original trace several times
• Demands are uniformly-random overestimated between 0% and 100% for each job

2.30e+05

2.35e+05

2.40e+05

2.45e+05

2.50e+05

0 25 50 75 100
Memory overestimation (%)

Re
sp

on
se

 ti
m

e
(s

)

COMPSYS Workshop, 3 /6/2022 37

Implications of memory demands - Individual Job II

• Jobs are filtered considering a fixed interval of the baseline response time
• The result shows the trend line correlating the response time and the memory overestimation
• There is still significant noise to notice the difference

100%
overestimation

0%
overestimation

4e+05

6e+05

8e+05

1e+06

0 10 20 30 40 50 60 70 80 90 100
Memory overestimation (%)

Re
sp

on
se

 ti
m

e
(s

)

COMPSYS Workshop, 3 /6/2022 38

Results - Individual job response time I

• We show the average response time (f-axis) as a function of the baseline response time (x-axis)}

• The 0% line is for a diligent user whereas the 100% line is for a careless user
• Large increase in response time even for a diligent user

• Difference between the users is less than 10%

• Conclusion: There is little incentive to the user be accurate
System 0% Large

Jobs Large 50%

1e
+0

5
2e

+0
5

3e
+0

5

2e+05

3e+05

4e+05

5e+05

6e+05

7e+05

Average baseline response time (s)

Av
er

ag
e

ac
tu

al
 re

sp
on

se
 ti

m
e

(s
)

Memory
Overestimation

0%

100%

COMPSYS Workshop, 3 /6/2022 39

Results - Individual job response time

• Little or no difference in the response time when we increase the number of large nodes in the system

• Conclusion: No incentive for users to be accurate when others users are not

System 0% Large System 15% Large System 25% Large
Jobs Large 50%

Jobs Large 75%
Jobs Large 100%

0.0
e+

00

2.5
e+

05

5.0
e+

05

7.5
e+

05
0e

+0
0

2e
+0

5
4e

+0
5

6e
+0

5
0e

+0
0

2e
+0

5
4e

+0
5

6e
+0

5

2e+05

4e+05

6e+05

3e+05

6e+05

9e+05

0.0e+00

5.0e+05

1.0e+06

1.5e+06

2.0e+06

Average baseline response time (s)

Av
er

ag
e

ac
tu

al
 re

sp
on

se
 ti

m
e

(s
)

Memory
Overestimation

0%

100%

COMPSYS Workshop, 3 /6/2022 40

Conclusion

• Composability and disaggregated memory show great promise in HPC

• Will need work across the whole system software (and hardware) stack
• We motivate some results using simulation with Slurm

• Static resource assignment may be an issue (as users have incentive overestimate memory demands)

• For more information
• Felippe Vieira Zacarias, Vinicius Petrucci, and Paul Carpenter. Improving HPC System Throughput and

Response Time using Memory Disaggregation. ICPADS 2021
• Felippe Vieira Zacarias, Vinicius Petrucci, and Paul Carpenter. Memory Demands in Disaggregated HPC: How

Accurate Do We Need to Be? PMBS Workshop 2021

COMPSYS Workshop, 3 /6/2022 41

