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* PRACE UEABS: Benchmark suite
of applications for procurement
of largest HPC systems in Europe

* Strong scalability (same problem

HPC application memory capacity requirements
vary dramatically (apps)

size on varying #nodes)

* Zivanovic et al, Main Memory in HPC: Do We Need More, or Could We Live with
Less? ACM Transactions on Architecture and Code Optimization, March 2017 400
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* Problem size per node varies
dramatically
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HPC application memory capacity requirements
vary dramatically (benchmarks)

* Benchmarking runs need large problem sizes to stress the machine
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MareNostrum 4

Total peak performance: 13,9 Pflops
11.15 Pflops
1.57 Pflops
0.65 Pflops
0.52 Pflops

General Purpose Cluster:
MN4 CTE-Power:

MN4 CTE-ARM:

MN4 CTE-AMD:

MareNostrum 1 MareNostrum 2
2004 - 42,3 Tflops 2006 — 94,2 Tflops
15t Europe / 4t World ‘ 15t Europe / 5" World
New technologies New technologies

e

MareNostrum 3
2012 - 1,1 Pflops
12th Europe / 36t World

MareNostrum 4
2017 - 11,1 Pflops
2" Europe / 13™ World
New technologies




Handling varying memory demands: state of the art:
Large and small memory nodes in MareNostrum 4

[ UNION EUROPEA

System Overview_¢€

MareNostrum4 is a supercomputer based on Intel Xeon Platinum processors from the Skylake
generation. It is a Lenovo system composed of SD530 Compute Racks, an Intel Omni-Path high
performance network interconnect and running SuSE Linux Enterprise Server as operating system. Its
current Linpack Rmax Performance is 6.2272 Petaflops.

This general-purpose block consists of 48 racks housing 3456 nodes with a grand total of 165,888
processor cores and 390 Terabytes of main memory. Compute nodes are equipped with:

e 2 sockets Intel Xeon Platinum 8160 CPU with 24 cores each @ 2.10GHz for a total of 48 cores
per node

L1d 32K; L1i cache 32K; L2 cache 1024K; L3 cache 33792K

96 GB of main memory 1.880 GB/core, 12x 8GB 2667Mhz DIMM (216 nodes high memory,
10368 cores with 7.928 GB/core)

Barcelons e 100 Gbit/s Intel Omni-Path HFI Silicon 100 Series PCI-E adapter https://www.bsc.es/user-support/mn4.php
Supercomputing e 10 Gbit Ethernet

Center e 200 GB local SSD available as temporary storage during jobs ($TMPDIR=/scratch/tmp/[jobid])

Centro Nacional de Supercomputaci6..
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Stranded resources in cluster architecture

e >90% of TOP500 HPC systems are clusters
e Cluster is large number of servers interconnected by network

* Each server has separate memory hierarchy
* Memory capacity unused by the CPUs on a node cannot be used by CPUs on another node

Rack 1 Rack n
Server . — -]

CPU
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Stranded resources (simulation)

* Large and small memory nodes work well when system matches jobs
* Left-hand plot: in this example bottlenecked by CPU availability

* But not so well when system does not match job mix

* Right—hand plot: system memory and CPU utilization both low
* => Resources exist in system but are “stranded”

* Methodology later in presentation
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Disaggregated architecture

Share memory capacity, storage, accelerators among nodes

Under investigation in academia and industry

(1) Addresses stranded resources problem

(2) Addresses coarse granularity of DIMM provisioning
* Power of two sizing, balanced over memory controller channels
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Approach 1: Disaggregated memory (aka centralized)

* Compute and memory completely separate Node
* Independent scaling of compute and far memory 0
* Independent upgrading (different rates of technology improvement)
* More “far” memory than single machine Node
» Separate failure domains for compute nodes and disaggregated memory 1
» Better shareability among processors (equidistant)

* Examples Node
 Memory APIl: The Machine (HPE), OpenFAM [LNCS2019], RAM Area Network (ANL) 2
* Paging device: [ISCA2009] [HPCA 2012] see
» Persistent key—value store: FlatStore [ASPLOS 2020], Clover [ATC2020] Mern
* Persistent memory file system: Octopus [ATC2017], Orion [FAST 2019] 0
* Database storage engine: NAM [VLDB 2016]
* Recoverable persistent data structures: AsymNVM [ASPLOS 2020] Mem
e OS: LegoOS [OSDI 2018] 1

* Full stack prototype: dRedBox [DATE 2018]

Mem
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Approach 2: “Remote memory” (aka distributed)

* Nodes can “borrow” unused memory from other machines
* Main advantage: tight coupling between CPU and its memory
* No cost/small cost if not using memory disaggregation

e Examples Mem | Node
* Paging and prefetching: Infiniswap [NSDI 2017], 0 0
Fastswap [EuroSys 2020], Leap [ATC 2020]
* Coherence-based memory: Kona [ASPLOS 2021]
Mem | Node
* PGAS: OpenSHMEM 1 1
* Distributed shared memory: FaRM [NSDI 2014],
Grappa [ATC 2015], HotPot [SOCC 2017], GAM
[VLDB 2018], Concordia [FAST 2021] Mem | Node
« Memory mapped files: Remote Regions [ATC 2018] 2 2
* Offloaded kernels: StRom [EuroSys 2020]
000

* Full stack prototype: ExaNoDe/EuroEXA, ThymesisFlow [MICRO
2020]

* Distinction between local and remote memory
* We use this approach
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Model disaggregated memory hierarchy

* Inspired by UNIMEM* from Euroserver, ExaNoDe and EuroEXA projects
 Remote memory access performed through a common Address Space

* We consider capacity sharing among pairs, quads, up to whole system

Interferin
9 Application A EURO
Application B SERVER
l FP7 grant
A number 610456
Core Core Core Core
Cluster Cluster DMA Cluster Cluster DMA I,,\,LQ,,
\L : ‘l/ J/ \l/ \l/ \l/ H2020 grant
Local interconnect E ____Local interconnect number 671578
v ¥ I v
Memory Interfacq' to Int'grface to Memory
controller remot(le riemote controllér
‘ A y H2020 grant
\ \ A i 4 LA number 754337
DRAM Global Interconnect DRAM
Barcelona
Supercomputing .. .
Center * Yves Durand et al. “Euroserver: Energy efficient node for european micro-servers”. In: 2014
Centro Nacional de Supercomputacion

17th Euromi&dVEeTiféreriberoty Bightal System Design. IEEE. 2014, pp. 206-213 11



Software is the issue!

System software
* OS support, MPI and PGAS communication, filesystems
* Dynamic changes and migration to avoid memory fragmentation (topic of “malleability” still research)

Resource management
» Batch scheduler: combinations of resources: memory types, memory capacities, accelerators, etc.

Hardware abstraction layer

Isolation among applications
e HPC used to exclusive access and non-blocking networks
* Memory bandwidth interference on one node may affect whole job, possibly with hundreds or thousands of
waiting nodes
Programming models
* Must be open and vendor independent
* Does application distinguish near and far memory? (when allocating, when using)

Applications
* How to tolerate increase in memory latency (base and due to contention): Little’s law
* Applications have lifetimes of decades, domain knowledge embedded in source code
* Major effort to adopt new technologies
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Other aspects of disaggregated memory

* User practices
* Characterization of jobs: knowing what requirements are (how much memory)
* Possible change to peer review process to allocate memory—hours, as well as CPU-hours (and energy?)

* Resilience
* MareNostrum 4 had 67 UEs in two years of operation
» Estimated loss of 40k node—hours due to aborted jobs (<0.1% of operation) [*]
* Disaggregated memory may make it worse though.

* Security
* How strong are the security guarantees?

[*] Isaac Boixaderas, Javier Bartolome, Paul M. Carpenter, Darko Zivanovic, David Vicente, Petar Radojkovic,
Sergi More, Marc Casas, and Eduard Ayguade. Cost-Aware Prediction of Uncorrected DRAM Errors in the Field.
International Conference for High Performance Computing, Networking, Storage, and Analysis, SC'20
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Scheduling and allocation problem

* Develop disaggregated memory aware Slurm job scheduler e
* Only new information is job memory demands at submission time

n
C
ﬁ
=

* Evaluate policy and architectural tradeoffs using simulation workload manager

1. Disaggregated memory systems are immature
* Not yet available (e.g. IBM POWER10)
e System software immature (e.g. ExaNoDe and EuroEXA)

* Typically high latencies due to FPGA emulation (e.g. ExaNoDe and EuroEXA, IBM
ThymesisFlow)

2. At-scale research in job scheduling cannot use a production machine
* Would negatively impact service delivered to users

* All results in this presentation were obtained using BSC Slurm simulator
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BSC Slurm simulator

Uses real Slurm daemons to capture influence of

all Slurm parameters

Allows fast exploration and evaluation of batch

scheduler algorithms

Input is Standard Workload Format trace (SWF)
Open-source: https://github.com/BSC-

RM/slurm simulator

Developed by Marco D'Amico, Ana Jokanovic,

Julita Corbalan at BSC
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slurm.conf Workload & arch.

description
\
\\ i
a ‘\ SLURM simulator
",‘ sim_mgr
|
SLURM AP
)
slurmctld slurmd

\_

SLURM
> logs/outs/DB

\
Individual
job's & system’s
metrics
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https://github.com/BSC-RM/slurm_simulator

Performance impact of disaggregated memory

e Slurm simulator needs to estimate cost of disaggregated memory: network and memory contention
* For evaluation, not scheduling policy

e Curve of performance depending on memory interface contention
e x-axis is maximum interference across all processes
* Curve depends on number of processes with interference close to maximum
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Slowdown curve: quantifies performance impact of interfering memory bandwidth
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Model inputs and outputs

Value Description
Application inputs:
f(bw,N) Slowdown curve: normalized performance as a function of
interfering bandwidth and number of nodes
R/W Ratio Percentage of memory operations that are reads
bwapp Total memory bandwidth (bytes/s)
Execution inputs:
bw Interfering bandwidth
N Number of interfering applications
Output:
Pegt Estimated normalized performance, typically 0 < Pegt < 1
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Multi-node (MPI program) slowdown methodology

Application [B|C|D]
Rank N
Application [B|C|D]
Rank 1 e Yoo )
Application [B|C|D] —| gardware @ Input for group (a,[b|cl|d]) T . ’
Rank 0 ounters : «— app[B|C|D]| :
Xr I - ' Number of Nodes | !
Read/\(Vnte : app[BIC|D] !
‘Socket 1HSocket 2’ —!  Ratio > E
[ L \2\pp A [ BWapp [B(CID] J E
pplication :
Rank N Interference “ ;
1 | T I I e
- Application A
Rank 1 Interfelrence Interference Smooth Curve @
Aprélicalt(i%n A Interference @ Y
an
y | y = fo(max(bws,
bwe, bwad))
‘Socket 1 HSocket 2’ —
Memory 1 _
Performance
Hardware Configuration

Appa
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Extending Slurm simulator for disaggregated memory

* We extended Slurm’s allocation policy to exploit disaggregation
* Remote memory accesses are model/ed after prior slowdown-based method

* Disaggregation-aware policy: Allocates nodes with enough local memory to satisfy the job's request,
otherwise favours node with higher free memory available

Supercomputing prediction for disaggregated memory systems”. In: Proceedings of the 17th CF. 2020, pp. 49-59

Center
Centro Nacional de Supercomputacién

(-( e Felippe Vieira Zacarias, Rajiv Nishtala, and Paul Carpenter. “Contention-aware application performance
rceiona

COMPSYS Workshop, 3 /6/2022 19



Extending Slurm simulator for disaggregated memory li

slurm.conf Trace

!

sim_mgr

SLURM API

SLURM
logs/outs
v
Individual
job's & system's
metrics
Slurmctid Slurmd
Schedule
Allocating disaggregated resources
Y
Available Verify node Select Allocate Launch 5| Simulate
nodes state nodes nodes job d job
, T
1 I======== -I
Y, S SRR S oo -
| Select memory ! | Slowdown 1 1 Send job : :Update job: ! Update
::pr:er?o'::puting . nodes : \ model | 1 duration :_ _______ 1 duration :_): mm::::d ,
Center
Centro Nacional de Supercomputgciér. COMPSYS Work Bh@ﬁ,e 31¢®me655 model 20
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Experimental methodology

We generated synthetic workloads using
CIRNE Model

And augmented it with real application
data

We set up different configurations to
explore heterogeneity in job requirements
and node capacities
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Order
Workload trace: 1 new
. . matched
e arrival time Order trace by
« start time trace 3 arrival time
« end time : bb.y- l
* job size aj:d :u:::‘e Match job and real 5
e efc... app based on size
. and runtime Convert file to
Pool of executed apps: similarity simulator input
* App name 2 Orderreal extension
* size apps
* runtime by size and
* memory size runtime
¢ memory bandwdith
¢ memory read/write Simulation
ratio input file
* etc...
Configuration parameter Value(s)
System size 1024 nodes
Number cores per node 32
Memory per node 32GB, 64GB
Allocation policy Baseline, disaggregated
Scheduling policy Backfill
Queue and Backfill size 100

Backfill and Scheduling interval

Heterogeneous system ratio: % Large n

30.s

COMPSYS Workshop, 3 /6/2022

odesf 0, 15, 25, 50, 75, 100 2
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Large and small memory job characteristics

* Normal jobs fit in 32 GB standard node

 Large jobs do not fit

 Composite traces, e.g. 25% large have jobs taken from large and small
with appropriate probabilities

Normal Jobs Large Jobs
Metric Memory (GB) Node-hours Memory (GB) Node-hours
Min 0.12 0.0 33.0 0.0
1st Qu. 1.7 0.85 48.2 0.0
Avg 6.2 52.6 48.5 24.9
3rd Qu. 3.8 15.0 49.8 2.1
Max 27.6 6412 49.8 3659.0
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Effect of disaggregated memory group size on

throughput

50% large jobs _ 75% large jobs 100% large jobs

25% large nodes
2 4 8 16 32 641282565121024

15% large nodes
2 4 8 16 32 641282565121024

System 0% Large

2 4 8 16 32 64 1282565121024

(99s/sqof) andy3noays pazijew.ionN

23

©

Q

whd

©

oY)

)

S

89
o

2 2

() N
L

[ | %)
o)
[e]

(0] G

(= =<

3 -

@ o

o 4

[ | =
S
S
{
S
1
2 3
5 ¢

s g §

£ $

bmwm

mm.n.m

MMCC

®



1Zzé on

Effect of disaggregated memory group s

50% large jobs _ 75% large jobs 100% large jobs

Sharing across whole system

throughp

at same latency: not feasible

15% large nodes

Sharing across

pairs of nodes

2 4 8 16 32 641282565121024

W Disaggregated

2 4 8 16 32 641282565121024

1024

16 32 64 128256

N Baseline

24
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No disaggregated memory:
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Effect of disaggregated memory group size on
throughput

50% large jobs _ 75% large jobs 100% large jobs

25% large nodes

2 4 8 16 32 641282565121024

15% large nodes

scope of disaggregated
memory
2 4 8 16 32 641282565121024

0% large nodes

2 4 8 16 32 64 1282565121024
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Norm. Throughput
(jobs/sec)
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Normalized throughput for
simulated systems running various job mixes

Jobs Large 0%

Jobs Large 15%

Jobs Large 25%
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Normalized throughput for
simulated systems running various job mixes

* Baseline cannot run large jobs on 0% large system

Jobs Large 0% Jobs Large 15% Jobs Large 25%
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Normalized throughput for
simulated systems running various job mixes

* Disaggregated approach matches baseline when sufficient memory

Jobs Large 0% Jobs Large 15% Jobs Large 25%

0\0 0\0 0\0 o\0 0\0 o\ 0\0 0\0 0\0 o\O 0\0 o\ 0\0 0\0 0\0 0\0 o\O o\
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= Jobs Large 50% Jobs Large 75% Jobs Large 100%
& 1.00
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Normalized throughput for
simulated systems running various job mixes

 Disaggregated approach has benefit when memory constrained

Jobs Large 0% Jobs Large 15% Jobs Large 25%
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Normalized throughput for
simulated systems running various job mixes

* Disaggregated approach gets similar performance with less memory

Jobs Large 0% Jobs Large 15% Jobs Large 25%

| 20% saving (0%
| 13% saving (0% large not 25%)
; |
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Sys 25% Sys 25% Sys 25% Sys 50% Sys 50% Sys 50%
Jobs 15% Jobs 25% Jobs 50% Jobs 25% Jobs 50% Jobs 75%
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Barcelona * Response time is queuing time plus runtime
Supercomputing
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Response time* distribution
for large and normal jobs

e Large and normal jobs benefit roughly equally
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Scatter graph of average
memory and CPU utilization
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Scatter graph of average
memory and CPU utilization

Match or overprovisioned: Baseline and

Underprovisioned: Disaggregrated fully disaggregated both bottlenecked by CPUs

using CPUs and/or memory
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Scheduling time per job

* Approx. 2x slower per job when no benefit (right-hand side)

* Approx. 2x faster per job when there is a benefit (left-hand side)
* Due to fewer attempts to backfill each job

Total scheduling

time/jobs (ms/job)
)& B » 00}
8 8 &8 8

| NI

0% 15% 25% 50% 75% 100%
System large ratio

(( Barcelona . Disaggregated Baseline
Supercompuuny

Center
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Problem: User must specify max memory demands

HPC schedulers typically assign resources to jobs statically

» Users are required to estimate job memory requirements at submission time
* Too low: jobs may be cancelled/killed
* Too high: may waste HPC resources

Key point #1: How important is accuracy in memory demands to system throughput and response
time?

Key point #2: What is user's incentive to be accurate, in terms of individual job response time?
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° Degradation in system th rOUghpUt increases System 0% Large System 15% Large System 25% Large
e Up to 25% reduction in throughput at 60%

e Conclusion: System throughput is sensitive

@

System throughput effect of overestimation

with system and job mix mismatch
increase in demands

to memory estimates

Barcelona

Supercomputing

Center

Centro Nacional de Supercomputacion

%0G 8b.Je sqor

%G/ ebJeT sqor

Throughput (jobs/sec)

%001 8b1e7 sqop

0 102030405060 0 102030405060 0 10 20 30 40 50 60
Memory overestimation (%)

COMPSYS Workshop, 3 /6/2022 36




Implications of memory demands - Individual Job

* User’s experience: how will memory demands affect my job response time?

* Plot single job response time as a function of memory overestimation, everything else constant
* Not practical

* We apply a Correlation analysis
* Running the original trace several times
e Demands are uniformly-random overestimated between 0% and 100% for each job
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Implications of memory demands - Individual Job Ii

* Jobs are filtered considering a fixed interval of the baseline response time
* The result shows the trend line correlating the response time and the memory overestimation
* There is still significant noise to notice the difference
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Results - Individual job response time |

We show the average response time (f-axis) as a function of the baseline response time (x-axis)}

The 0% line is for a diligent user whereas the 100% line is for a careless user

Large increase in response time even for a diligent user

Difference between the users is less than 10%

Conclusion: There is little incentive to the user be accurate
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Results - Individual job response time

* Little or no difference in the response time when we increase the number of large nodes in the system

* Conclusion: No incentive for users to be accurate when others users are not
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Conclusion

Composability and disaggregated memory show great promise in HPC

Will need work across the whole system software (and hardware) stack

We motivate some results using simulation with Slurm

Static resource assignment may be an issue (as users have incentive overestimate memory demands)

* For more information

* Felippe Vieira Zacarias, Vinicius Petrucci, and Paul Carpenter. Improving HPC System Throughput and
Response Time using Memory Disaggregation. ICPADS 2021

* Felippe Vieira Zacarias, Vinicius Petrucci, and Paul Carpenter. Memory Demands in Disaggregated HPC: How
Accurate Do We Need to Be? PMBS Workshop 2021
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