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HPC application memory capacity requirements
vary dramatically (apps)

• PRACE UEABS: Benchmark suite 
of applications for procurement 
of largest HPC systems in Europe

• Strong scalability (same problem 
size on varying #nodes)
• Problem size per node varies 

dramatically

* Zivanovic et al, Main Memory in HPC: Do We Need More, or Could We Live with 
Less? ACM Transactions on Architecture and Code Optimization, March 2017

NAMD
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HPC application memory capacity requirements
vary dramatically (benchmarks)

• Benchmarking runs need large problem sizes to stress the machine

HPL scaling (model) HPCG scaling (model)

* Zivanovic et al, Main Memory in HPC: Do We Need More, or Could We Live with Less? 
ACM Transactions on Architecture and Code Optimization, March 2017 Article No. 3
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General Purpose Cluster: 11.15 Pflops
MN4 CTE-Power: 1.57 Pflops
MN4 CTE-ARM: 0.65 Pflops
MN4 CTE-AMD: 0.52 Pflops

MareNostrum 1
2004 – 42,3 Tflops

1st Europe / 4th World
New technologies 

MareNostrum 2
2006 – 94,2 Tflops

1st Europe / 5th World
New technologies

MareNostrum 3
2012 – 1,1 Pflops

12th Europe / 36th World

MareNostrum 4
2017 – 11,1 Pflops

2nd Europe / 13th World
New technologies

MareNostrum 4
Total peak performance: 13,9 Pflops
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Handling varying memory demands: state of the art:
Large and small memory nodes in MareNostrum 4

https://www.bsc.es/user-support/mn4.php
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Stranded resources in cluster architecture
• >90% of TOP500 HPC systems are clusters

• Cluster is large number of servers interconnected by network
• Each server has separate memory hierarchy

• Memory capacity unused by the CPUs on a node cannot be used by CPUs on another node
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Stranded resources (simulation)
• Large and small memory nodes work well when system matches jobs

• Left-hand plot: in this example bottlenecked by CPU availability
• But not so well when system does not match job mix

• Right–hand plot: system memory and CPU utilization both low
• => Resources exist in system but are “stranded”

• Methodology later in presentation

System matches job mix
(25% large nodes, 25% large jobs)

System mismatches job mix
(25% large nodes, 50% large jobs)
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Disaggregated architecture

• Share memory capacity, storage, accelerators among nodes

• Under investigation in academia and industry
• (1) Addresses stranded resources problem

• (2) Addresses coarse granularity of DIMM provisioning
• Power of two sizing, balanced over memory controller channels
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Approach 1: Disaggregated memory (aka centralized)
• Compute and memory completely separate

• Independent scaling of compute and far memory
• Independent upgrading (different rates of technology improvement)
• More “far” memory than single machine
• Separate failure domains for compute nodes and disaggregated memory
• Better shareability among processors (equidistant)

• Examples
• Memory API: The Machine (HPE), OpenFAM [LNCS2019], RAM Area Network (ANL)
• Paging device: [ISCA2009] [HPCA 2012]
• Persistent key–value store: FlatStore [ASPLOS 2020], Clover [ATC2020]
• Persistent memory file system: Octopus [ATC2017], Orion [FAST 2019]
• Database storage engine: NAM [VLDB 2016]
• Recoverable persistent data structures: AsymNVM [ASPLOS 2020]
• OS: LegoOS [OSDI 2018]
• Full stack prototype: dRedBox [DATE 2018]
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Approach 2: “Remote memory” (aka distributed)
• Nodes can “borrow” unused memory from other machines

• Main advantage: tight coupling between CPU and its memory
• No cost/small cost if not using memory disaggregation

• Examples
• Paging and prefetching: Infiniswap [NSDI 2017],

Fastswap [EuroSys 2020], Leap [ATC 2020]
• Coherence-based memory: Kona [ASPLOS 2021]
• PGAS: OpenSHMEM
• Distributed shared memory: FaRM [NSDI 2014],

Grappa [ATC 2015], HotPot [SOCC 2017], GAM
[VLDB 2018], Concordia [FAST 2021]

• Memory mapped files: Remote Regions [ATC 2018]
• Offloaded kernels: StRom [EuroSys 2020]
• Full stack prototype: ExaNoDe/EuroEXA, ThymesisFlow [MICRO 

2020]

• Distinction between local and remote memory
• We use this approach
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Model disaggregated memory hierarchy
• Inspired by UNIMEM* from Euroserver, ExaNoDe and EuroEXA projects
• Remote memory access performed through a common Address Space
• We consider capacity sharing among pairs, quads, up to whole system

H2020 grant
number 671578

FP7 grant 
number 610456

H2020 grant
number 754337 

• Yves Durand et al. “Euroserver: Energy efficient node for european micro-servers”. In: 2014 
17th Euromicro Conference on Digital System Design. IEEE. 2014, pp. 206–213 COMPSYS Workshop, 3 /6/2022 11



Software is the issue!
• System software

• OS support, MPI and PGAS communication, filesystems
• Dynamic changes and migration to avoid memory fragmentation (topic of ”malleability” still research)

• Resource management
• Batch scheduler: combinations of resources: memory types, memory capacities, accelerators, etc.

• Hardware abstraction layer
• Isolation among applications

• HPC used to exclusive access and non-blocking networks
• Memory bandwidth interference on one node may affect whole job, possibly with hundreds or thousands of 

waiting nodes
• Programming models

• Must be open and vendor independent
• Does application distinguish near and far memory? (when allocating, when using)

• Applications
• How to tolerate increase in memory latency (base and due to contention): Little’s law
• Applications have lifetimes of decades, domain knowledge embedded in source code
• Major effort to adopt new technologies
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Other aspects of disaggregated memory

• User practices
• Characterization of jobs: knowing what requirements are (how much memory)
• Possible change to peer review process to allocate memory–hours, as well as CPU–hours (and energy?)

• Resilience
• MareNostrum 4 had 67 UEs in two years of operation
• Estimated loss of 40k node–hours due to aborted jobs (<0.1% of operation) [*]
• Disaggregated memory may make it worse though.

• Security
• How strong are the security guarantees?

[*] Isaac Boixaderas, Javier Bartolome, Paul M. Carpenter, Darko Zivanovic, David Vicente, Petar Radojkovic,
Sergi More, Marc Casas, and Eduard Ayguade. Cost-Aware Prediction of Uncorrected DRAM Errors in the Field.
International Conference for High Performance Computing, Networking, Storage, and Analysis, SC'20
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Scheduling and allocation problem

• Develop disaggregated memory aware Slurm job scheduler
• Only new information is job memory demands at submission time

• Evaluate policy and architectural tradeoffs using simulation

1. Disaggregated memory systems are immature
• Not yet available (e.g. IBM POWER10)
• System software immature (e.g. ExaNoDe and EuroEXA)
• Typically high latencies due to FPGA emulation (e.g. ExaNoDe and EuroEXA, IBM 

ThymesisFlow)

2. At-scale research in job scheduling cannot use a production machine
• Would negatively impact service delivered to users

• All results in this presentation were obtained using BSC Slurm simulator
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BSC Slurm simulator

• Uses real Slurm daemons to capture influence of 
all Slurm parameters

• Allows fast exploration and evaluation of batch 
scheduler algorithms

• Input is Standard Workload Format trace (SWF) 

• Open-source: https://github.com/BSC-
RM/slurm_simulator

• Developed by Marco D'Amico, Ana Jokanovic, 
Julita Corbalan at BSC
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Performance impact of disaggregated memory
• Slurm simulator needs to estimate cost of disaggregated memory: network and memory contention

• For evaluation, not scheduling policy

• Curve of performance depending on memory interface contention
• x-axis is maximum interference across all processes
• Curve depends on number of processes with interference close to maximum

Slowdown curve: quantifies performance impact of interfering memory bandwidth
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Model inputs and outputs
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Multi-node (MPI program) slowdown methodology
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Extending Slurm simulator for disaggregated memory

• We extended Slurm’s allocation policy to exploit disaggregation

• Remote memory accesses are model/ed after prior slowdown-based method
• Disaggregation-aware policy: Allocates nodes with enough local memory to satisfy the job's request, 

otherwise favours node with higher free memory available

Felippe Vieira Zacarias, Rajiv Nishtala, and Paul Carpenter. “Contention-aware application performance
prediction for disaggregated memory systems”. In: Proceedings of the 17th CF. 2020, pp. 49–59 
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Extending Slurm simulator for disaggregated memory II
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Experimental methodology

• We generated synthetic workloads using 
CIRNE Model

• And augmented it with real application 
data 

• We set up different configurations to 
explore heterogeneity in job requirements 
and node capacities 
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Large and small memory job characteristics

• Normal jobs fit in 32 GB standard node
• Large jobs do not fit
• Composite traces, e.g. 25% large have jobs taken from large and small 

with appropriate probabilities
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Effect of disaggregated memory group size on 
throughput
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Effect of disaggregated memory group size on 
throughput
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Effect of disaggregated memory group size on 
throughput
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Normalized throughput for
simulated systems running various job mixes

COMPSYS Workshop, 3 /6/2022 26



Normalized throughput for
simulated systems running various job mixes
• Baseline cannot run large jobs on 0% large system

XX

X X X
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Normalized throughput for
simulated systems running various job mixes
• Disaggregated approach matches baseline when sufficient memory
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Normalized throughput for
simulated systems running various job mixes
• Disaggregated approach has benefit when memory constrained
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Normalized throughput for
simulated systems running various job mixes

• Disaggregated approach gets similar performance with less memory

13% saving (0% 
large not 15%)

20% saving (0% 
large not 25%)

33% saving (0% large 
not 50%, for 5% 

throughput drop)

16% saving (50% 
large not 75%)
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Response time* distribution
for large and normal jobs 

* Response time is queuing time plus runtime 

• Large and normal jobs benefit roughly equally
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Scatter graph of average
memory and CPU utilization

COMPSYS Workshop, 3 /6/2022 32



Scatter graph of average
memory and CPU utilization

Underprovisioned: Baseline
not fully using CPUs or memory 

Underprovisioned: Disaggregrated fully
using CPUs and/or memory

Match or overprovisioned: Baseline and
disaggregated both bottlenecked by CPUs
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Scheduling time per job
• Approx. 2x slower per job when no benefit (right-hand side)
• Approx. 2x faster per job when there is a benefit (left-hand side)

• Due to fewer attempts to backfill each job 
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Problem: User must specify max memory demands

• HPC schedulers typically assign resources to jobs statically

• Users are required to estimate job memory requirements at submission time
• Too low: jobs may be cancelled/killed
• Too high: may waste HPC resources

• Key point #1: How important is accuracy in memory demands to system throughput and response 
time?

• Key point #2: What is user's incentive to be accurate, in terms of individual job response time?

COMPSYS Workshop, 3 /6/2022 35



System throughput effect of overestimation

• Degradation in system throughput increases 
with system and job mix mismatch

• Up to 25% reduction in throughput at 60% 
increase in demands

• Conclusion: System throughput is sensitive 
to memory estimates
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Implications of memory demands - Individual Job
• User’s experience: how will memory demands affect my job response time?
• Plot single job response time as a function of memory overestimation, everything else constant

• Not practical
• We apply a Correlation analysis

• Running the original trace several times
• Demands are uniformly-random overestimated between 0% and 100% for each job
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Implications of memory demands - Individual Job II

• Jobs are filtered considering a fixed interval of the baseline response time
• The result shows the trend line  correlating the response time and the memory overestimation
• There is still significant noise to notice the difference
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Results - Individual job response time I

• We show the average response time (f-axis) as a function of the baseline response time (x-axis)}

• The 0% line is for a diligent user whereas the 100% line is for a careless user
• Large increase in response time even for a diligent user

• Difference between the users is less than 10%

• Conclusion: There is little incentive to the user be accurate
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Results - Individual job response time

• Little or no difference in the response time when we increase the number of large nodes in the system

• Conclusion: No incentive for users to be accurate when others users are not
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Conclusion

• Composability and disaggregated memory show great promise in HPC

• Will need work across the whole system software (and hardware) stack
• We motivate some results using simulation with Slurm

• Static resource assignment may be an issue (as users have incentive overestimate memory demands)

• For more information
• Felippe Vieira Zacarias, Vinicius Petrucci, and Paul Carpenter. Improving HPC System Throughput and 

Response Time using Memory Disaggregation. ICPADS 2021
• Felippe Vieira Zacarias, Vinicius Petrucci, and Paul Carpenter. Memory Demands in Disaggregated HPC: How 

Accurate Do We Need to Be? PMBS Workshop 2021
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