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Introduction

▪ Over 2.5 quintillion bytes generated
daily1

End Users

▪ Adoption of novel  in-memory processing 
frameworks for large scale data analytics

Providers
▪ Integration of heterogeneous memory 

technologies and multi-tier memory architectures. 
▪ DRAM along with PMEM on the same server
▪ Disaggregated DRAM

1. Data never sleeps, https://www.domo.com/solution/data-never-sleeps-6
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End Users

▪ Adoption of novel  in-memory processing 
frameworks for large scale data analytics
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What kind of applications 
are favored?

How spark should be 
internally configured?

How memory tiers 
should be configured 

and selected?

Providers
▪ Integration of heterogeneous memory 

technologies and multi-tier memory architectures. 
▪ DRAM along with PMEM on the same server
▪ Disaggregated DRAM

https://www.domo.com/solution/data-never-sleeps-6
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Goal of this work
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Provide an exploration and performance analysis of Spark applications over 
an heterogeneous multi-tier memory system

▪ Key questions w.r.t. the effect of memory tiering on Spark analytics

▪ Key takeaways in terms of:

▪ Performance Implications

▪ Performance Bottlenecks

▪ Performance predictability
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Spark (quick) Background
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Spark 
Executor

Spark 
Executor

…Spark 
Executor

Workers that 
actually execute
the tasks

Memory Memory Memory

RDD

Wordcount

Orchestrator that determines 
the tasks to be performed 
based on a piece of code

Spark Driver
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Spark (quick) Background
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Spark 
Executor

Spark 
Executor

…Spark 
Executor

Workers that 
actually execute
the tasks

Memory Memory Memory

Wordcount

Orchestrator that determines 
the tasks to be performed 
based on a piece of code

Spark Driver

Extremely efficient

Requires huge amount 
of memory

Perfect candidate for multi-
tier/disaggregated systems!
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Spark Benchmarks
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▪ Pseudo-distributed, standalone mode:

▪ Spark driver and executors on the same node

▪ HDFS file system

▪ Benchmarks derived from HiBench1 suite:

▪ Diverse domains

▪ micro-operations, ML, web search

▪ Diverse set of input workloads:
▪ tiny, small, large

*https://github.com/Intel-bigdata/HiBench
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Hardware Testbed
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▪ Dual-socket Intel Xeon 5218R 
▪ 40 threads/socket

▪ Symmetric DRAM topology
▪ 2x32GB DDR4 DRAM DIMMs per socket

▪ Assymetric Intel Optane DCPM topology
▪ 2x256GB (socket 1) vs 4x256GB (socket 2)

▪ App Direct mode

▪ 4 Memory tiers with difference latency and 
bandwidth 
▪ Tier binding through numactl command
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Performance Implications of Memory Tiering
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How do applications 
perform on 

different tiers?

tiny small large tiny small large tiny small large

Workload size
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Identical performance 
across all tiers
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Performance Implications of Memory Tiering
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How do applications 
perform on 

different tiers?

tiny small large tiny small large tiny small large

Workload size
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Linaer vs. non-linear 
performance
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Performance Implications of Memory Tiering
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How do applications 
perform on 

different tiers?

tiny small large tiny small large tiny small large

Workload size
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Takeaway: Performance degradation 
depends on the nature of each 

application and input workload size

Constant performance 
gap across tiers
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Performance Implications of Memory Tiering
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What is the core 
bottleneck of 
performance 
degradation?

Takeaway: Performance degradation 
depends on the nature of each 

application and input workload size

Performance drop is 
proportional to the number of 

RD+WR accesses
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Performance Implications of Memory Tiering
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What is the core 
bottleneck of 
performance 
degradation?

Takeaway: Performance is highly affected by the 
number of RD and WR operations on PMEM, with 

the latter having even more impact by design.

Takeaway: Performance degradation 
depends on the nature of each 

application and input workload size

Non-linear performance 
degradation when 

#WR >> #RD accesses

~3x more 
accesses

~7x 
slowdown
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Energy Implications of Memory Tiering
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How about 
energy 

consumption?
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Takeaway: Energy consumption is inline with 
execution time and DRAM (despite less power-) is 

more energy-efficient

Takeaway: Performance degradation 
depends on the nature of each 

application and input workload size

Takeaway: Performance is highly affected by the 
number of RD and WR operations on PMEM, with 

the latter having even more impact by design.

~64% less energy 
consumption for DRAM
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Bandwidth vs. Latency
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▪ Limit cores’ available bandwidth to memory and execute on Tier 2
▪ Intel’s Memory Bandwidth Allocation(MBA) tool*

▪ 20, 40, 60, 80, 100%

▪ Average execution time and variance are 
not affected by available bandwidth 

▪ Our applications do not saturate 
bandwidth

Takeaway: Performance is dominated by latency and bandwidth is not saturated

Does bandwidth or 
latency dominate 

performance?

*https://github.com/intel/intel-cmt-cat
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Spark “Sizing” vs. Performance
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▪ Different  number of executors and cores/executor
▪ Executor colocation with concurrent access to memory

▪ Baseline (default execution) ➔ single executor, 40 cores

How do different 
deployment 

approaches affect 
performance?

pagerank - small

Takeaway: Increased number of executors 
that compete over shared memory 

resources leads to further performance 
degradation, with persistent memory being 

even more susceptible to resource contention.



On the implications of Heterogeneous Memory Tiering on Spark In-memory AnalyticsM. Katsaragakis, et. al

Spark “Sizing” vs. Performance
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▪ Different  number of executors and cores/executor
▪ Executor colocation with concurrent access to memory

▪ Baseline (default execution) ➔ single executor, 40 cores

How do different 
deployment 

approaches affect 
performance?

pagerank - small lda - small

Takeaway: Increased number of executors 
that compete over shared memory 

resources leads to further performance 
degradation, with persistent memory being 

even more susceptible to resource contention.

Takeaway: Certain benchmarks are not 
affected by altering deployment’s sizing 
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Spark “Sizing” vs. Performance
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▪ Different  number of executors and cores/executor
▪ Executor colocation with concurrent access to memory

▪ Baseline (default execution) ➔ single executor, 40 cores

Takeaway: Increased number of executors 
that compete over shared memory 

resources leads to further performance 
degradation, with persistent memory being 

even more susceptible to resource contention.

How do different 
deployment 

approaches affect 
performance?

pagerank - small

Takeaway: Bigger workload size can lead to 
performance boost due to amortization of 
interference degradation from parallel 

processing

pagerank - large

Takeaway: Certain benchmarks are not 
affected by altering deployment’s sizing 
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▪ Pearson Correlation

▪ How execution time correlates with:

1) System-level events (e.g., IPC, LLC misses) ?
▪ No linear correlation for the majority of the benchmarks 
➔ Complex ML models needed

2) Hardware specs of each tier (Latency/Bandwidth) ?
▪ Very high linear correlation for all benchmarks
➔ Linear models can be utilized

Can we obtain an 
estimation of 

performance on 
different memory 

tiers?

Performance Predictability



On the implications of Heterogeneous Memory Tiering on Spark In-memory AnalyticsM. Katsaragakis, et. al

Conclusions

▪ In-memory applications + Multi-tier memory architectures emerging
▪ Spark perfect candidate

▪ In-memory computations
▪ Vast amount of memory requirements

In this work :
▪ Performance analysis of Spark applications over heterogeneous multi-tier memory system
▪ Key takeaways

▪ Spark applications highly affected by slower memory tiers (due to latency)
▪ Slower memory tiers can be utilized without performance drop in certain cases
▪ Promising signs for performance predictions using ML
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{mkatsaragakis,dmasouros}@microlab.ntua.gr

Q & A
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