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Introduction

* Rise of applications executed in the Cloud

* Application co-location (multi-tenancy)

o Resource interference 9 performance degradation

 Traditional infrastructures = static architecture

o Servers with fixed number of CPUs and RAM + HW accelerators

* Several issues/challenges w.r.t. resource efficiency

o Fragmentation of resources

o Handling of HW failures e R G
. . ; | Server Managerr | Server Manager Server Manager
o Integration of new HW devices ; 6P
I [ HDD V V SSD 7‘ =0 CPU
CPU CPU DRAM
DRAM DRAM
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Why Memory Disaggregation?

Imbalance in the cloud: An analysis on Alibaba

: . cluster trace
b Memory IS a major Fa Ctor W.r. t. reSOUrce Chengzhi Lu, Kejiang Ye, +2 authors Tongxin Bai = Published 1 December 2017 - Computer Science -

2017 IEEE International Conference on Big Data (Big Data)
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« Memory disaggregation to the rescuel!
o Allocate mermorv either locallv or from Pond: CXL-Based Memory Pooling Systems for
_ _ y y Cloud Platforms
ne'ghbor'ng nOdeS OVer network Huaicheng Li, Daniel S. Berger, +10 authors R. Bianchini + Published 1 March 2022 - Computer Science -«
Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems,
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Why Memory Disaggregation?

« Memory is a major factor w.r.t. resource
fragmentation

o Memory shortage

o Memory stranding

e Memorv disagoresation to the rescue! Towards an Adaptable Systems Architecture for
y geree Memory Tiering at Warehouse-Scale
o Allocate memory either locally or from T e L S

neighboring nodes over network Design Tradeoffs in CXL-Based Memory Pools for

, , . Public Cloud Platforms
o Memory disaggregation and multi-tier memory anel

architectures infiltrating the Cloud world Pond: CXL-Based Memory Pooling Systems for
Cloud Platforms

Huaicheng Li, Daniel S. Berger, +10 authors R. Bianchini + Published 1 March 2022 - Computer Science -

Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems,
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Challenges of Memory Disaggregated Cloud systems
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Performance Implications of Memory Disaggregation

Adrias: Interference-Aware Memory

. P F d d t b d . - Orchestration for Dlsaggregated Cloud
erformance egra ation y eSIgn Enfra’stru ThymesisFlow: A Software-Defined, HW/SW co-
. sezmenion| Designed Interconnect Stack for Rack-Scale
o Network Latency/Bandwidth & Protocol overheads Melfory e
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Performance Implications of Memory Disaggregation

* Performance degradation by design 2 Infrastry
o Network Latency/Bandwidth & Protocol overheads :

| > 20% average performance degradation for Spark apps

i > Not akin across all benchmarks

| > LC apps insensitive to remote memory | 3 i
- EREE
. . Stacking interference effects :

Interference complicates things 6

Adrias: Interference-Aware Memory
- Orchestration for Dlsaggregated Cloud

osthel
2023 |EEE Inter

Christian Pinto, D. Syrivelis, +4 authors H. P. Hof:

ThymesisFlow: A Software-Defined, HW/SW co-
Designed Interconnect Stack for Rack-Scale
Memory Disaggregation

- Published 1 October 2020 - Computer Science -
— — — — —— — — — — — Sm— . E— — — e— — 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)

nweight

memBw - 1.5

amaount

o Huge performance chasm between local and remote

o Stacking interference effects

' » Up to x4 worst performance under memory bandwidth and |

! LLC interference
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Up to x4 worst
performance when
stressing L3 cache

Values show the slowdown of remote memory vs. local for
the same amount of applied interference (higher is worse)
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Performance Implications of Memory Disaggregation

* Performance degradation by design
o Network Latency/Bandwidth & Protocol overheads

| > 20% average performance degradation for Spark apps
j > Not akin across all benchmarks

| > LC apps insensitive to remote memory

Interference complicates things
o Huge performance chasm between local and remote

o Stacking interference effects

| > Up to x4 worst performance under memory bandwidth and
i LLC interference

I > Not akin across all benchmarks
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Memory Disaggregation
Chris Pinto, D. Syrivelis, +4 authors H.P.
2020 53rd Annual IEEE/ACM International Syrr

tee - Published 1 October 2020 - Computer Science *

jum on Microarchitecture (MICRO)

nweight

1.1 1.1 1.1

Not similar behavior across different benchmarks

Values show the slowdown of remote memory vs. local for
the same amount of applied interference (higher is worse)
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Performance Implications of Memory Disaggregation

* Performance degradation by design =
o Network Latency/Bandwidth & Protocol overheads

| > 20% average performance degradation for Spark apps
j > Not akin across all benchmarks
| > LC apps insensitive to remote memory
Interference complicates things
o Huge performance chasm between local and remote

o Stacking interference effects

............................................. _|

B > Up to x4 worst performance under memory bandwidthand |

! LLC interference

i > Not akin across all benchmarks

| > LC apps sensitive to memory bandwidth interference

Adrias: Interference-Aware Memory
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Christian Pinto, D. Syrivelis, +4 authors H.P. Hofstee - Published 1 October 2020 - Computer Science -
2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)
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Potential Use of ML for Resource Management

« Naive use of remote memory 9 huge performance degradation

 “Intelligent” memory mapping of applications
o Allocate “remote-memory friendly” apps on disaggregated pool
o Minimize shared resource interference

o Minimize data travelling back & forth through the network
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Fundamental Questions

WHERE ? HOW ?
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Fundamental Questions
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Levels of Applying ML Solutions

oo

<code/>

01. Application

v Data locality

03. Runtime

v Minimize Interference between
co-scheduled applications v Dynamically (re-Jallocate

v Memory-aware data structures ° L
resources of running applications

v Understanding resource

v Intelligent data placement . L
requirements of applications v Predicting applications’ violations

v' Root-cause analysis

Interference Awareness
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Prior works to be considered

Towards making the most of NLP-based device
mappmg optlmlzatlon for OpenCL kernels
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Prior works to be considered
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Fundamental Questions
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How to use ML?

Things to consider when deciding how to exploit ML in Exploring the opportunities to use ML,
the possible designs, and our experience
cloud resource management: with Microsoft Azure.

BY RICARDO BIANCHINI, MARCUS FONTOURA, ELI CORTEZ,
ANAND BONDE, ALEXANDRE MUZIO0, ANA-MARIA CONSTANTIN,

* What should the ML model do? GIRISH BABLANI, AND MARK RUSSINOVICH
* What inputs should the ML model receive? Toward
* What should the ML model’s architecture be? ML-ce ntric

* How quickly and often should the ML do CIOUd
predictions? Platforms
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ML Integration Approaches

ML model’s purpose:
* Behavioral predictions (predictor)

* Actual management actions (actuator)

ML modeling approach:

* One model per application / memory type
+ More accurate (probably)
- Less scalable

e One model to rule them all!

Dimosthenis Masouros

ML inputs

ML inputs

ML as predictor

g ’:::§ Prediction

I /
ll F replies
| —_—
Predlchon

requests

Disaggregated System

ML as actuator

A

Disaggregated System

A

Towards ML-driven resource orchestration in disaggregated memory systems: Challenges and Opportunities

suolpy

suolpy



What Inputs to Use?

* Application-specific (high-level) metrics
o Accurate (real) performance
o Difficult to acquire

o Developers have to instrument apps with monitoring tools

(e.g., AWS Cloudwatch)
Rusty: Runtime Interference-Aware Predictive
* System-wide (lower-level) metrics | Monitoring for Modern Multl Tenant Systems
o Imperfect proxy for performance —_— Characterizing Job Microarchitectural Profiles at
_ , Scale: Dataset and Analysis
o Always available to providers Kangi a, gL+ ors. Lin han - Pubisted 29 Aot 202 - Comptes S
o Can be used to "predict” performance SOL: safe on-node learning in cloud platforms
Ya-wen Wang, D. Crankshaw, +3 authors R. Bianchini + Published 25 January 2 » Computer Science -
Proceedings of the 27th ACM International Conference on Architectu upport for Programming Languages and Operating Systems
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What Inputs to Use?
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Levels of Applying ML Solutions
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v Minimize Interference between
co-scheduled applications

v Understanding resource
requirements of applications

Interference Awareness
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(really abstract) Overview

radlh
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| allocate my
memory?

Locally

@ Goal: Adrias aims to efficiently place all memory allocations of
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ThymesisFlow: A Software-Defined, HW/SW co-
Designed Interconnect Stack for Rack-Scale
Memory Disaggregation

Christian Pinto, D. Syrivelis, +4 authors H.P. Hofstee - Published 1 October 2020 - Computer Science -

Local Remote 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)
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(really abstract) Overview

radlh

Where shouD
| allocate my
memory?

Locally

@ Goal: Adrias aims to efficiently place all memory allocations of

/ L
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Data collection

Overlapping e

i . i i i i i Separated
1 Distributions ---’T"---i----{-’---«f----‘r---w'--- Distributions | B8 local

i i 4'/ . ¢ 1 [IEE remote

« 72 random 1-hour scenarios deployed

[]
k4

o Random applications arriving at random intervals

Scenarios’ Insights

logio(Execution Time) (sec)

- Overlapping performance distributions (e.g., gmm)

T T T T
N .. w w2
o Remote memory could be beneficial in certain interference = 25 £
. (=]
scenarios “

pagerank —+---

repartition i---

terasort 44----
wordcount -

o Sacrifice performance for leveraging remote memory

- Separated performance distributions (e.g., nweight)

o Use of remote memory prohibitive due to stacking
interference effects




Evaluation Results

Predicted vs. Real (system state model)

- System state model TG W AT J
o LLCy RMT o RMTs
o ~0.99 R? score* for all predicted metrics M o memy |
VX ———
« Performance prediction model ooy gy
204 1o i dommmee

o 0.94 average R? score* for performance prediction of both BE
and LC on local and remote

021 N —

0.0 t T t
0.00 0.2 0.50 0.75 1.00
Real

« Orchestration logic
Predicted vs. Real (perf. prediction model)

o Qutperforms Random and Round-Robin schedulers

. . [ Local o Remote] Redis Memcached
o Allocates 10%-35% to remote memory with 0.5%-15% median T0 —— 10 T 020 —
. RF‘OC&" =0.918 7 E ." i ,',
performance degradation 0.8 R more = 08904 L i 7 P R
. o N o 1 :03{97?7 E’I”
o Up to 55% less traffic on the network channel g 067 g o ﬁe%% 0104 i ]
= o g .
. . L 8 041 8 Loat - glho A
o Aligns with scenarios’ insights < 7 g ool
‘ xi 0.05 +g8f e
0.2 14 0.2 o~ o
0.0 25 0.0 F—t 0.00
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.1 0.2
*Values closer to 1 are better Real Real Real
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For More Results...

Adrias: Interference-Aware Memory
Orchestration for Disaggregated Cloud
Infrastructures

Dimosthenis Masouros, Christian Pinto, +2 authors D. Soudris + Published 1 February 2023 « Computer Science -
2023 IEEE International Symposium on High-Performance Computer Architecture (HPCA)
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« Memory disaggregation is the next big thing (in the Cloud]
« Memory disaggregation + interference =» huge performance variability and unpredictability
« ML for systems can be a strong tool (tailored to our needs)

« Rethink and adapt current ML solutions

Adrias showed the potential of ML in disaggregated memory systems
Separated ML and Orchestration logic

Able to leverage remote memory with minimal performance impact

&

dmasouros@microlab.ntua.gr
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