Centralized Composable HPC Management with the OpenFabrics Management Framework

Michael Aguilar
Phil Cayton (Intel), Christian Pinto (IBM), Russ Herrell (HPE)

IPDPS/COMPSYS23
St. Petersburg, Florida, USA
May 19, 2023
Contributors to the OFMF

The goal of the OFMF is to enable interoperability through common interfaces to enable client Managers to efficiently connect workloads with resources in a complex heterogenous ecosystem, without having to worry about the underlying network technology.
What are Composable Disaggregated HPC Systems?

Advantages of Composability over Current HPC Architectures

- Mitigate Resource Overprovisioning
- Reduce Energy Consumption and cooling costs
 - 4% of the World’s Energy Consumption is input into Datacenters
- Localized Provisioning where resources are needed
What are Composable Disaggregated HPC Systems?

SPECIFIC OR CONSTRAINED COMPOSITION

EXPANDABLE COMPOSITION

Existing Chassis

Existing Chassis

Existing Chassis

FAM MEMORY

BLOCK STORAGE

CPU

FAM MEMORY

BLOCK STORAGE

CPU

FAM MEMORY

BLOCK STORAGE

CPU

FAM MEMORY

BLOCK STORAGE
Composable Disaggregated Infrastructure (CDI) in an HPC Architecture

- Pools can be used to augment memory with direct-addressable devices and block devices
- ccNUMA for the FAM memory
- NVMeoF for the Block storage

SPECIFIC AND EXPANDABLE COMPOSITION

- Existing Chassis
- Existing Chassis
- Existing Chassis

FAM MEMORY

BLOCK STORAGE
What are Composable Disaggregated HPC Systems?

Homogeneous HPC Systems become Heterogeneous HPC Systems
What are Composable Disaggregated HPC Systems?

CDI HPC Nodes and Fabric Attached Memory

Single logical device case
(color coding denotes binding)

- Host1
- Host2
- CXL Switch
- FAM 1
- FAM 2

Multi logical device case

- Host1
- Host2
- CXL Switch
- FAM 1
- FAM 2
OpenFabrics Management Framework for Composable Distributed Systems

We need a centralized control infrastructure to manage our disaggregated compositions and decompositions

We want:

• To be able to control Composable Disaggregated Infrastructure (CDI) in an HPC Architecture

• Redfish Representation of a Composable Disaggregated Infrastructure Components. Redfish provides us with structures that we can use to store and read component information.

• Swordfish Representation of Storage Pools, Volumes, and Endpoint Groups

• A centralized service that can provide current up-to-date information on CDI compositions and cluster state information

• A centralized service that can abstractly manage our CDI compositions
Redfish Representation of a Composable Disaggregated Infrastructure

Redfish mapping of a simple HPC system

Simple Gen-Z Linux System Redfish Tree: Physical Objects, Endpoints, and Port linkages

© OpenFabrics Alliance
Redfish Representation of a Composable Disaggregated Infrastructure
Redfish mapping of a simple HPC system

Simple Gen-Z Linux System Redfish Tree: Physical Objects, Endpoints, and Port linkages

```shell
$> curl -X GET -H "Content-Type: application/json" http://ofmfserv:5000/redfish/v1/Fabrics
{
  "@odata.type": "#FabricCollection.FabricCollection",
  "Name": "Fabric Collection",
  "Members@odata.count": 2,
  "Members": [
    {
      "@odata.id": "/redfish/v1/Fabrics/NVMeoF"
    },
    {
      "@odata.id": "/redfish/v1/Fabrics/Ethernet"
    }
  ],
  "@odata.id": "/redfish/v1/Fabrics"
}
```

```shell
$> curl -X POST -H "Content-Type: application/json" -d @fabric_connection.json http://ofmfserv:5000/redfish/v1/Fabrics/CXL
Warning: Couldn't read data from file "fabric_connection.json", this makes an empty POST.
{
  "@odata.id": "/redfish/v1/Fabrics/CXL",
  "@odata.type": ":Fabric.v1_3_CXL.Fabric",
  "Id": "CXL",
  "Name": "Fabric"
}
```
Redfish Representation of a Composable Disaggregated Infrastructure

Redfish mapping of a simple HPC system

curl -X GET -H "Content-Type: application/json"
http://ofmfserv:5000/redfish/v1/Fabrics/NVMeoF/Endpoints/Initiator1
{
 "@odata.type": "#Endpoint.v1_7_0.Endpoint",
 "Id": "Initiator1",
 "Name": "NVMe-oF Initiator (Host)",
 "EndpointProtocol": "NVMeOverFabrics",
 "Identifiers": [
 {
 "DurableName": "host.corp.com:nvme:nvm-subsys-sn-4635",
 "DurableNameFormat": "NQN"
 }
],
 "ConnectedEntities": [
 {
 "EntityType": "NetworkController",
 "EntityRole": "Initiator"
 }
],
 "IPTransportDetails": [
 {
 "TransportProtocol": "Ethernet",
 "IPv4Address": {
 "Address": "10.3.5.205"
 },
 "Port": 13244
 }
],
 "Links": {
 "Connections": [
 {
 "@odata.id": "/redfish/v1/Fabrics/NVMeoF/Connections/1"
 }
]
 }
}
Redfish Representation of a Composable Disaggregated Infrastructure
Redfish mapping of a simple HPC system

curl -X GET -H "Content-Type: application/json" http://ofmfserv:5000/redfish/v1/Fabrics/NVMeoF/Connections/1
{
 "@odata.type": "#Connection.v1_0_0.Connection",
 "@Redfish.ReleaseStatus": "WorkInProgress",
 "Id": "1",
 "Name": "Host Connection 1",
 "Description": "Connection info for host 1",
 "ConnectionType": "Storage",
 "VolumeInfo": [
 {
 "AccessCapabilities": [
 "Read",
 "Write"
],
 "Volume": {
 "@odata.id": "/redfish/v1/Storage/IPAttachedDrive1/Volumes/SimpleNamespace"
 }
 },
 {
 "AccessCapabilities": [
 "Read",
 "Write"
],
 "Volume": {
 "@odata.id": "/redfish/v1/Storage/IPAttachedDrive2/Volumes/SimpleNamespace"
 }
 }
],
 "@odata.id": "/redfish/v1/Fabrics/NVMeoF/Connections/1"
Redfish Representation of a Composable Disaggregated Infrastructure
CXL-3.0

CDI HPC Nodes and Fabric Attached Memory

Single logical device case
(color coding denotes binding)

```
Host1  Host2
```

CXL Switch

```
FAM 1  FAM 2
```

Multi logical device case

```
Host1  Host2
```

CXL Switch

```
FAM 1  FAM 2
```
{
 "@odata.type": "#Volume.v1_8_0.Volume",
 "Id": "1",
 "Name": "Namespace 1",
 "LogicalUnitNumber": "1",
 "Description": "A Namespace is a quantity of non-volatile memory that may be formatted into logical blocks. When formatted, a namespace of size n is a collection of logical blocks with logical block addresses from 0 to (n-1). NVMe systems can support multiple namespaces."
 "Status": {
 "State": "Enabled",
 "Health": "OK"
 },
 "Identifiers": [
 {
 "DurableNameFormat": "NQN",
 "DurableName": "nqn.2014-08.org.nvmexpress:uuid:6c5fe566-10e6-4fb6-aad4-8b4159029384"
 }
],
 "Capacity": {
 "Data": {
 "ConsumedBytes": 0,
 "AllocatedBytes": 10737418240
 }
 },
 "NVMeNamespaceProperties": {
 "NamespaceId": "0x011",
 "NamespaceFeatures": {
 "SupportsThinProvisioning": false,
 "SupportsAtomicTransactionSize": false,
 "SupportsDeallocatedOrUnwrittenLBError": false,
 "SupportsNGUIDReuse": false,
 }
 }
}
Redfish Representation of a Composable Disaggregated Infrastructure

NVMe of Model: Subsystem Target View

Logical NVMe-of

Storage (Logical Subsystem)

Controller (Logical Controller)

Network Adapter

Network Zone Function

Volume (Logical Namespace)

Endpoints (Logical Port)

Connections (Allowed Hosts)

Logical NVMe-of

Redfish/Swordfish

Storage

Controller

Storage Pool

Volume

Endurance Group

Namespace (WVMe)

Capacity

Logical I/O Controller (NVMe-of)

Logical Namespace (NVMe-of)

Logical Port (NVMe-of)

Allowed Hosts (NVMe-of)

Full Endurance Group

Default Set (0)

Set

Namespace (WVMe)

Namespace (WVMe)

Namespace (WVMe)
Composable Disaggregated Infrastructure (CDI) in an HPC Architecture
Composable Disaggregated HPC system controlled by the OFMF
OFMF Architecture
HardWare Fabric Agents interacting with the OFMF
OFMF Architecture---The OFMF components

- App driven system reconfig
- Systems composition
- Systems update

Clients

Hardware Layer

RESTful API (RF8F)

Management Layer

OFMF Services
- Resource Inventory
- RF tree management
- Resource Configuration
- Fabric Configuration
- Authentication
- Access Control
- Events & Logs

Data Store

Fabric Resources Monitoring
Composition Policies
Resource Control (e.g., Compute, FAM, Storage, Fabric)
Events & Logs

Composability Layer

System

CXL Manager
Zephyr Fabric Manager
Slingshot FM
OmniPath FM
InfiniBand SM

Infra management

RedFish
Vendor Native API
Redfish/Native Translation

Events
OFMF Architecture
Composable Infrastructure interacting with the OFMF

- Fabric Resources Monitoring
- Composition Policies
- Resource Control (e.g., Compute, FAM, Storage, Fabric)
- Events & Logs
- Data Store
- Composability Layer

OFMF Services
- Resource Inventory
- RF tree management
- Resource Configuration
- Fabric Configuration
- Authentication
- Access Control
- Events & Logs
- Data Store

Clients
Management Layer
Hardware Layer

Application Domain
- App driven system reconfig

Administration Domain
- Systems composition
- Systems update
- Infra management

CXL Manager
- CXL Agent
- Gen-Z Agent
- Slingshot FM
- Slingshot Agent
- OmniPath FM
- OmniPath Agent
- InfiniBand SM
- IB Agent

REST+ API (RF5/F)
RedFish
Vendor Native API
Redfish/Native Translation
Examples of CDI HPC Use-Cases
Composable Filesystem on a composable Disaggregated Infrastructure
Examples of CDI HPC Use-Cases
Container Engine interacting with the OFMF
Example of NVMeoF over and RDMA fabric
What's Next for OFMF Development

We are adding Events as a way to provide notifications of changes to the HPC systems
- Events happen when a Hardware Agent provides details about network fabrics that are detected, hardware changes, etc. The events get propagated to the OFMF and to clients.

Redfish Mock-ups for CXL, GenZ, RDMA, Slingshot

OFMF Redfish Tree clean-up and Stranded Resource notifications

Further development of the Reference Fabric Agent framework

Reference Composability Manager framework

Reference Fabric Attached Memory framework

Reference Monitoring framework

OS SUPPORT FOR DYNAMIC ADDITION AND DELETION OF RESOURCES

Fish name—Sunfish?

Evangelization of the OFMF to the industry
Questions?